SELALU SEMANGAT WALAUPUN RINTANGAN MENGHADANG
Tampilkan postingan dengan label kls X KIMIA. Tampilkan semua postingan
Tampilkan postingan dengan label kls X KIMIA. Tampilkan semua postingan

Selasa, 07 Juni 2011

Hubungan Tingkat Keasaman dengan pH

Hubungan Tingkat Keasaman dengan pH

Ditulis oleh Utiya Azizah pada 05-03-2010
Bila Anda perhatikan, nilai pH merupakan eksponen negatif dari konsentrasi ion hidronium. Sebagai contoh, larutan basa kuat dengan konsentrasi ion hidronium 10-11 M mempunyai pH 11. Larutan asam kuat dengan pH 1 mempunyai konsentrasi ion hidronium 10-1 M. Hal ini dikarenakan asam/basa kuat terionisasi sempurna, maka konsentrasi ion H+ setara dengan konsentrasi asamnya.
37
Berdasarkan uraian di atas, karena pH dan konsentrasi ion H+ dihubungkan dengan tanda negatif, maka kedua besaran itu berbanding terbalik, artinya makin besar konsentrasi ion H+ (makin asam larutan) maka makin kecil nilai pH, dan sebaliknya. Selanjutnya, karena dasar logaritma adalah 10 maka larutan yang nilai pH-nya berbeda sebesar n dan mempunyai perbedaan konsentrasi ion H+ sebesar 10n. Bila pH berkurang, konsentrasi ion hidronium akan meningkat, dan konsentrasi ion hidroksida berkurang. Pada setiap unit penurunan pH sama dengan peningkatan faktor 10 untuk konsentrasi ion hidronium.
Sebagai contoh, larutan dengan pH 4 dan larutan dengan pH 3 keduanya bersifat asam, karena mempunyai pH kurang dari 7. Larutan dengan pH 3 mempunyai konsentrasi H3O+ 10 kali lebih besar
dari pada larutan dengan pH 4, sehingga perubahan kecil dalam pH dapat membuat perubahan besar dalam konsentrasi ion hidronium. Bila pH meningkat di atas 7, konsentrasi ion hidroksida akan meningkat, dan konsentrasi ion hidronium akan berkurang. Dalam larutan netral, konsentrasi ion hidroksida dan ion hidronium adalah sama.
»»  READMORE...

Macam-macam Konsentrasi

Macam-macam Konsentrasi

Ditulis oleh Utiya Azizah pada 06-03-2010
Konsentrasi didefinisikan sebagai jumlah zat terlarut dalam setiap satuan larutan atau pelarut. Pada umumnya konsentrasi dinyatakan dalam satuan fisik, misalnya satuan berat atau satuan volume dan satuan kimia, misalnya mol, massa rumus, dan ekivalen.

1. Persen Konsentrasi

Dalam bidang kimia sering digunakan persen untuk menyatakan konsentrasi larutan. Persen konsentrasi dapat dinyatakan dengan persen berat (% W/W) dan persen volume (% V/V)
Persen berat (% W/W)
38
Contoh Soal 5
a. Dalam 100 gram larutan terlarut 20 gram zat A. Berapa persen
berat zat A
b. Berapa persen volume zat B, bila dalam 50 mL larutan terlarut 10
mL zat B.
Penyelesaian
39

2. Parts Per Million (ppm) dan Parts Per Billion (ppb)

Bila larutan sangat encer digunakan satuan konsentrasi parts per million, ppm (bagian persejuta), dan parts per billion, ppb (bagian per milliar). Satu ppm ekivalen dengan 1 mg zat terlarut dalam 1 L larutan. Satu ppb ekivalen dengan 1 ug zat terlarut per 1 L larutan.
40
Parts per million (ppm) dan parts per billion (ppb) adalah satuan yang mirip persen berat. Bila persen berat, gram zat terlarut per 100 g larutan, maka ppm gram terlarut per sejuta gram larutan, dan ppb zat terlarut per milliar gram larutan.
41

3. Fraksi Mol

Fraksi mol (x) adalah perbandingan mol salah satu komponen dengan jumlah mol semua komponen. Jika suatu larutan mengandung zat A, dan B dengan jumlah mol masing-masing nA dan nB, maka fraksi mol masing-masing komponen adalah:
42

4. Molaritas (M)

Molaritas atau konsentrasi molar (M) suatu larutan menyatakan jumlah mol spesi zat terlarut dalam 1 liter larutan atau jumlah milimol dam 1 mL larutan.
43
»»  READMORE...

LAJU REAKSI KIMIA

Selasa, 16 Juni 2009

KONSEP LAJU REAKSI

1. Pengertian Laju Reaksi
Laju menyatakan seberapa cepat atau seberapa lambat suatu proses berlangsung. Laju juga menyatakan besarnya perubahan yang terjadi dalam satu satua waktu. Satuan waktu dapat berupa detik, menit, jam, hari atau tahun.
Reaksi kimia adalah proses perubahan zat pereaksi menjadi produk. Seiring dengan bertambahnya waktu reaksi, maka jumlah zat peraksi semakin sedikit, sedangkan produk semakin banyak. Laju reaksi dinyatakan sebagai laju berkurangnya pereaksi atau laju terbentuknya produk.

2. Ungkapan Laju Reaksi untuk Sistem Homogen

Minggu, 20 Maret 2011

penetralan

Kamis, 17 Maret 2011


Reaksi Penetralan/Penggaraman Asam Basa
Kata Kunci: asam lambung, larutan asam, obat-obatan
Ditulis oleh Utiya Azizah pada 03-03-2010

Dari televisi, Anda sering melihat iklan yang menggambarkan bagaimana efektifnya antasid (obat maag) dalam menetralkan asam lambung. Apa yang dikandung obat-obatan antasid tersebut? Ternyata obat-obatan tersebut mengandung basa, karena hanya basa yang dapat menetralkan pengaruh asam. Umumnya zat-zat dengan sifat yang berlawanan, seperti asam dan basa cenderung bereaksi satu sama lain. Reaksi asam dan basa merupakan pusat kimiawi sistem kehidupan, lingkungan, dan proses-proses industri yang penting. Bila larutan asam direaksikan dengan larutan basa, maka sebagian dari ion H3O+ asam akan bereaksi dengan sebagian ion OH- basa membentuk air.

23

Karena air bersifat netral, maka reaksi asam dengan basa disebut reaksi penetralan. Persamaan diatas hanya memperhitungkan sebagian ion-ion yang ada dalam larutan. Apakah yang terjadi dengan ion negatif sisa asam dan ion positif sisa basa? Ion-ion ini akan bergabung membentuk senyawa ion yang disebut garam. Bila garam yang terbentuk itu mudah larut dalam air, maka ion-ionnya akan tetap ada dalam larutan. Tetapi jika garam itu sukar larut dalam air, maka ion-ionnya akan bergabung membentuk endapan.
Jadi reaksi asam dengan basa disebut juga penggaraman, karena:
24
Persamaan berikut menunjukkan apa yang terjadi pada semua ionion selama terjadi reaksi penetralan atau reaksi penggaraman.
25
NaCl adalah garam yang mudah larut dalam air. Jadi ion-ion Na+ dan Cl- tetap dalam larutan. Apabila larutan itu diuapkan akan di dapat kristal natrium klorida (NaCl). Untuk melihat proses pembentukan NaCl perhatikan Gambar 16 berikut.
26
26
27
Tujuan dari titrasi adalah menentukan konsentrasi larutan seperti HCl, menggunakan larutan NaOH yang konsentrasinya tidak diketahui. Tahap-tahap titrasi berdasarkan Gambar 17, asumsikan masing-masing larutan 1 L (a). Kemudian mengambil 25 mL larutan HCl dengan
menggunakan pipet seukuran (pipet gondok) (b) dan memasukkan pada tabung erlenmeyer (c), ditambahkan 2 tetes indikator. Indikator menunjukkan reaksi dengan adanya perubahan warna, bila titik akhir telah dicapai. Titik akhir reaksi menunjukkan bahwa mol pereaksi sama dengan mol hasil reaksi. Hal ini menandakan bahwa titrasi telah selesai.

Larutan NaOH diletakkan dalam buret (d). Lalu proses titrasi dilakukan dengan cara membuka kran buret dan meneteskan setetes demi tetes (e). Jika telah terjadi perubahan warna berarti titik akhir telah tercapai. Jumlah mol HCl sama dengan jumlah mol NaOH dengan reaksi:
28
Selanjutnya kita dapat menghitung konsentrasi larutan HCl. Volume larutan NaOH dibaca dalam buret awal dan akhir titrasi. Lebih jelasnya perhatikan contoh soal berikut.

Contoh Soal 1

Hitung konsentrasi larutan HCl bila konsentrasi larutan NaOH 1,500 M, volume larutan HCl 25,00 mL, pembacaan buret awal adalah 1,42 mL, dan buret akhir 46,10 mL.

Penyelesaian Volume larutan NaOH adalah 46,10 mL – 1,42 mL = 44,68 mL, maka
jumlah mol NaOH =
»»  READMORE...

Histogram dan Poligon Frekuensi

Histogram dan Poligon Frekuensi
Matematika Kelas 2 > Statistika
401
HISTOGRAM dan POLIGON FREKUENSI adalah dua grafik yang menggambarkan distribusi frekuensi.
HISTOGRAM terdiri dari persegi panjang yang alasnya merupakan panjang kelas interval, sedangkan tingginya sama dengan frekuensi masing-masing kelas interval.
POLIGON FREKUENSI adalah suatu garis putus putus yang menghubungkan titik tengah ujung batang histogram. Biasanya ditambah dua segmen garis lain yang menghubungkan titik tengah ujung batang pertama dan terakhir dengan titik tengah kelas yang paling ujung dimana frekuensinya bernilai nol.
Contoh:
Buatlah histogram clan poligon frekuensi dari distribusi frekuensi di bawah ini.
Tinggi
Frekuensi
151 - 155
5
156 - 160
20
161 - 165
42
166 - 170
26
171 - 175
7
Jumlah
100

Kamis, 24 Maret 2011

penyangga

Fungsi Larutan Penyangga

Larutan penyangga sangat penting dalam kehidupan; misalnya dalam analisis kimia, biokimia, bakteriologi, zat warna, fotografi, dan industri kulit. Dalam bidang biokimia, kultur jaringan dan bakteri mengalami proses yang sangat sensitif terhadap perubahan pH. Darah dalam tubuh manusia mempunyai kisaran pH 7,35 sampai 7,45, dan apabila pH darah manusia di atas 7,8 akan menyebabkan organ tubuh manusia dapat rusak, sehingga harus dijaga kisaran pHnya dengan larutan penyangga.
  1. Darah Sebagai Larutan Penyangga
Ada beberapa faktor yang terlibat dalam pengendalian pH darah, diantaranya penyangga karbonat, penyangga hemoglobin dan penyangga fosfat.
a. Penyangga Karbonat
Penyangga karbonat berasal dari campuran asam karbonat (H 2 CO 3 ) dengan basa konjugasi bikarbonat (HCO 3 ).
H 2 CO 3 (aq) --> HCO 3(aq) + H + (aq)
Penyangga karbonat sangat berperan penting dalam mengontrol pH darah. Pelari maraton dapat mengalami kondisi asidosis, yaitu penurunan pH darah yang disebabkan oleh metabolisme yang tinggi sehingga meningkatkan produksi ion bikarbonat. Kondisi asidosis ini dapat mengakibatkan penyakit jantung, ginjal, diabetes miletus (penyakit gula) dan diare. Orang yang mendaki gunung tanpa oksigen tambahan dapat menderita alkalosis, yaitu peningkatan pH darah. Kadar oksigen yang sedikit di gunung dapat membuat para pendaki bernafas lebih cepat, sehingga gas karbondioksida yang dilepas terlalu banyak, padahal CO 2 dapat larut dalam air menghasilkan H 2 CO 3 . Hal ini mengakibatkan pH darah akan naik. Kondisi alkalosis dapat mengakibatkan hiperventilasi (bernafas terlalu berlebihan, kadang-kadang karena cemas dan histeris).
b. Penyangga Hemoglobin
Pada darah, terdapat hemoglobin yang dapat mengikat oksigen untuk selanjutnya dibawa ke seluruh sel tubuh. Reaksi kesetimbangan dari larutan penyangga oksi hemoglobin adalah:
HHb + O 2 (g) « HbO 2 - + H +
Asam hemoglobin ion aksi hemoglobin
Keberadaan oksigen pada reaksi di atas dapat memengaruhi konsentrasi ion H +, sehingga pH darah juga dipengaruhi olehnya. Pada reaksi di atas O 2 bersifat basa. Hemoglobin yang telah melepaskan O 2 dapat mengikat H + dan membentuk asam hemoglobin. Sehingga ion H + yang dilepaskan pada peruraian H 2 CO 3 merupakan asam yang diproduksi oleh CO 2 yang terlarut dalam air saat metabolisme.
c. Penyangga Fosfat
Pada cairan intra sel, kehadiran penyangga fosfat sangat penting dalam mengatur pH darah. Penyangga ini berasal dari campuran dihidrogen fosfat (H 2 PO 4 - ) dengan monohidrogen fosfat (HPO 3 2- ).
H 2 PO 4 - (aq) + H + (aq) --> H 2 PO 4(aq)
H 2 PO 4 - (aq) + OH - (aq) --> HPO 4 2- (aq) ) + H 2 O (aq)
Penyangga fosfat dapat mempertahankan pH darah 7,4. Penyangga di luar sel hanya sedikit jumlahnya, tetapi sangat penting untuk larutan penyangga urin.
  1. Air Ludah sebagai Larutan Penyangga
Gigi dapat larut jika dimasukkan pada larutan asam yang kuat. Email gigi yang rusak dapat menyebabkan kuman masuk ke dalam gigi. Air ludah dapat mempertahankan pH pada mulut sekitar 6,8. Air liur mengandung larutan penyangga fosfat yang dapat menetralisir asam yang terbentuk dari fermentasi sisa-sisa makanan.
  1. Menjaga keseimbangan pH tanaman.
Suatu metode penanaman dengan media selain tanah, biasanya ikerjakan dalam kamar kaca dengan menggunakan mendium air yang berisi zat hara, disebut dengan hidroponik . Setiap tanaman memiliki pH tertentu agar dapat tumbuh dengan baik. Oleh karena itu dibutuhkan larutan penyangga agar pH dapat dijaga.
  1. Larutan Penyangga pada Obat-Obatan
Asam asetilsalisilat merupakan komponen utama dari tablet aspirin, merupakan obat penghilang rasa nyeri. Adanya asam pada aspirin dapat menyebabkan perubahan pH pada perut. Perubahan pH ini mengakibakan pembentukan hormon, untuk merangsang penggumpalan darah, terhambat; sehingga pendarahan tidak dapat dihindarkan. Oleh karena itu, pada aspirin ditambahkan MgO yang dapat mentransfer kelebihan asam.
»»  READMORE...

Distribusi Frekuensi Kumulatif

Distribusi Frekuensi Kumulatif
Matematika Kelas 2 > Statistika
402
Distribusi frekuensi kumulatif dapat digambarkan oleh suaatu grafik yang disebut Poligon Frekuensi Kumulatif atau OGIVE, yang melukiskan frekuensi kumulatip terhadap batas atas kelas.
Contoh:
Tinggi
frekuensi
< 150,5
0
< 155,5
5
< 160,5
25
< 165,5
67
< 170,5
93
< 175,5
100
 

   

Ukuran Pemusatan Untuk Data Yang Tidak Digolongkan
Matematika Kelas 2 > Statistika
403
Untuk sekelompok data yang diperoleh, yaitu x1, x2, x3, . . . . . . , x maka dapat ditentukan:

  1. RATA-RATA (MEAN)       (notasi: x dibaca : x bar)
    _
    x = (x1+x2+.....+xn)/n = å xi / n = å (fi.xi) / n           dimana åfi = n

                                                  ~
  2. MEDIAN                       (notasi: x )
    Adalah
    nilai tengah dari data yang telah diurutkan menurut besarnya.

    Dengan ketentuan:
    Jika banyak data ganjil, maka median adalah nilai tengah dari data yang telah diurutkan.

    (Data ke (n+1)/2 )

                                                  ^
  3. MODUS                        (notasi : x)
    Adalah nilai data yang sering muncul (mempunyai
    frekuensi terbesar). Modus dapat ada ataupun tidak ada. Kalaupun ada dapat lebih dari satu.
Contoh:
Diketahui data
7, 9, 8, 13, 12, 9, 6, 5     n = 8
  1. Rata-rata
        _
        x = (5+6+7+8+9+9+12+13)/8 = 8,625


  2. Median
    Data diurutkan terlebih dahulu menjadi
    5 6 7 8 9 9 12 13
        ~
        x = (8+9)/2 = 8,5


  3. Modus
        ^
        x = 9
Salah satu definisi menyebutkan bahwa statistik adalah metode ilmiah untuk menyusun, meringkas, menyajikan dan menganalisa data, sehingga dapat ditarik suatu kesimpulan yang benar dan dapat dibuat keputusan yang masuk akal berdasarkan data tersebut.
Jika suatu kesimpulan data sudah dihimpun, pada statistika deskriptif kita hendak menyimpulkan data itu dalam beberapa hal. Pertama kita hendak membuat tabel, misalnya tabel frekuensi, tabel frekuensi kumulatif dan lain-lain yang mengatur data kasar itu. Juga kita akan melihat diagram atau grafik yang dapat memberi gambaran mengenai keseluruhan data itu, misalnya diagram lambang (piktogram), diagram batang, diagram lingkaran, histogram, ogive dan lain-lain. Kemudian kita hendak menghitung karakteristik data yang dapat mencakup semua data itu, misalnya rata-rata, median, modus dan lain-lain.
»»  READMORE...

KERADIOAKTIFAN BUATAN

KERADIOAKTIFAN BUATAN
Perubahan inti yang terjadi karena ditembak oleh partikel.
Prinsip penembakan:

  • Jumlah nomor atom sebelum penembakan = jumlah nomor atom setelah penembakan.
  • Jumlah nomor massa sebelum penembakan = jumlah nomor massa setelah penembakan.
Misalnya:  714 N +  24 He ®  817 O + 11 p

RUMUS

k = (2.3/t) log (No/Nt)
k = 0.693/t1/2
t = 3.32 . t1/2 . log No/Nt
k = tetapan laju peluruhan
t = waktu peluruhan
No = jumlah bahan radioaktif mula-mula
Nt = jumlah bahan radioaktif pada saat t
t1/2 = waktu paruh


RINGKASAN

1. Kestabilan inti: umumnya suatu isotop dikatakan tidak stabil bila:
a. n/p > (1-1.6)
b. e > 83 

e = elektron
n = neutron
p = proton

2. Peluruhan radioaktif:
a. Nt = No . e-1
b. 2.303 log No/Nt = k . t
c. k . t1/2 = 0.693
d. (1/2)n = Nt/No
    t1/2 x n = t

No = jumiah zat radioaktif mula-mula (sebelum meluruh)
Nt = jumiah zat radioaktif sisa (setelah meluruh)
k = tetapan peluruhan
t = waktu peluruhan
t1/2 = waktu paruh
n = faktor peluruhan

Contoh:
1. Suatu unsur radioaktif mempunyai waktu paruh 4 jam. Dari sejumlah No unsur tersebut setelah 1 hari berapa yang masih tersisa ?
Jawab:
t1/2 = 4 jam ; t= 1 hari = 24 jam
t1/2 x n = t ®
   n = t/t1/2 = 24/4 = 6
(1/2)n = Nt/No ®
   (1/2)6 = Nt/No ®   Nt = 1/64 No
2. 400 gram suatu zat radioaktif setelah disimpan selama 72 tahun ternyata masih tersisa sebanyak 6.25 gram. Berapakah waktu paruh unsur radioaktif tersebut ?
Jawab:
No = 400 gram
Nt = 6.25 gram
t = 72 tahun

(1/2)n = Nt/No = 6.25/400 = 1/64 = (1/2)6
n = 6 (n adalah faktor peluruhan)
t = t1/2 x n ® t1/2 = t/n = 72/6 = 12 tahun
»»  READMORE...

Keradioaktifan Alam

Keradioaktifan Alam
Kimia Kelas 2 > Zat Radioaktif
194
Definisi : Bagian dari ilmu kimia yang mempelajari unsur-unsur yang bersifat radiokatif

MACAMNYA

KERADIOAKTIFAN ALAM
- Terjadi secara spontan

Misalnya: 92238 U ®
    90224 Th + 24 He
1. Jenis peluruhan
a. Radiasi Alfa
    
- terdiri dari inti 24 He
    - merupakan partikel yang massif
    - kecepatan 0.1 C
    - di udara hanya berjalan beberapa cm sebelum menumbuk
      molekul udara

b. Radiasi Beta
    
- terdiri dari elektron -10 e atau -10 beta
    - terjadi karena perubahan neutron 01 n ®
   1 1 p + -10 e
    - di udara kering bergerak sejauh 300 cm

c. Radiasi Gamma
     -
merupakan radiasi elektromagnetik yang berenergi tinggi
    - berasal dari inti
    - merupakan gejala spontan dari isotop radioaktif

d. Emisi Positron
     -
terdiri dari partikel yang bermuatan positif dan hampir sama
      dengan elektron
    - terjadi dari proton yang berubah menjadi neutron 1 1 p ®
   01
        n + +10 e
e. Emisi Neutron
     -
tidak menghasilkan isotop unsur lain

 
2. Kestabilan inti
- Pada umumnya unsur dengan nomor atom lebih besar dari 83
  adalah radioaktif.
- Kestabilan inti dipengaruhi oleh perbandingan antara neutron dan
  proton di dalam inti.

    * isotop dengan n/p di atas pita kestabilan menjadi stabil dengan
       memancarkan partikel beta.
    * isotop dengan n/p di bawah pita kestabilan menjadi stabil
       dengan menangkap elektron.
    * emisi positron terjadi pada inti ringan.
    * penangkapan elektron terjadi pada inti berat.

 
3. Deret keradioaktifan

Deret radioaktif ialah suatu kumpulan unsur-unsur hasil peluruhan suatu radioaktif yang berakhir dengan terbentuknya unsur yang stabil.

a. Deret Uranium-Radium

    Dimulai dengan  92 238 U dan berakhir dengan  82 206 Pb
b. Deret Thorium
    Dimulai oleh peluruhan  90 232 Th dan berakhir dengan  82 208 Pb
c. Deret Aktinium
    Dimulai dengan peluruhan 92 235 U dan berakhir dengan  82 207 Pb
d. Deret Neptunium
    Dimulai dengan peluruhan  93 237 Np dan berakhir dengan  83 209
    Bi
»»  READMORE...

Kimia Lingkungan

Kimia Lingkungan
Kimia Kelas 2 > Kimia Lingkungan
196
DEFINISI
Bagian dari ilmu kimia yang mempelajari pengaruh dari bahan kimia terhadap lingkungan.
KETENTUAN
Kimia lingkungan mempelajari zat-zat kimia yang penggunaannya dapat menguntungkan dibidang kemajuan teknologi tetapi hasil-hasil sampingannya merugikan, serta cara pencegahannya.

MACAMNYA
1. Pencemaran udara
2. Pencemaran air
3. Pencemaran tanah

1. Pencemaran udara
  a. Karbon monoksida (CO)
- tidak berwarna dan tidak barbau
- bersifat racun karena dapat berikatan dengan hemoglobin CO
  + Hb ®
   COHb
- kemampuan Hb untuk mengikat CO jauh lebih besar dan O2,
  akibatnya darah kurang berfungsi sebagai pengangkut 02

  b. Belerangdioksida (SO2)
-
berasal dari: gunung api, industri pulp dengan proses sulfit dan
  hasil pembakaran bahan bakar yang mengandung belerang (S)
- warna gas : coklat
- bersifat racun bagi pernafasan karena dapat mengeringkan
  udara

  c. Oksida nitrogen (NO dan NO2)
- pada pembakaran nitrogen, pembakaran bahan industri dan
  kendaraan bermotor
- di lingkungan yang lembab, oksida nitrogen dapat membentuk
  asam nitrat yang bersifat korosif

  d. Senyawa karbon
- dengan adanya penggunaan dari beberapa senyawa karbon di
   bidang pertanian, kesehatan dan peternakan, misalnya
   kelompok organoklor
- organoklor tersebut: insektisida, fungisida dan herbisida
2. Pencemaran air
  a. Menurunnya pH air memperbesar sifat korosi air pada Fe dan dapat mengakibatkan terganggunya
kehidupan organisme air.
  b. Kenaikan suhu air mengakibatkan kelarutan O2 berkurang.
  c. Adanya pembusukan zat-zat organik yang mengubah warna, bau dan rasa air.
Syarat air sehat:
- tidak berbau dan berasa
- harga DO tinggi dan BOD rendah
3. Pencemaran tanah
  - Adanya bahan-bahan sintetik yang tidak dapat dihancurkan oleh
  mikroorganisme seperti plastik.
- Adanya buangan kimia yang dapat merusak tanah.
4. Dampak polusi
 
JENIS POLUTAN D A M P A K
CO Racun sebab afinitasnya terhadap Hb besar
NO Peningkatan radiasi ultra violet sebab NO menurunkan kadar O3 (filter ultra violet)
Freon s d a
NO2 Racun paru
Minyak Ikan mati sebab BOD naik
Limbah industri Ikan mati sebab BOD naik
Pestisida Racun sebab pestisida adalah organoklor
Pupuk Tumbuhan mati kering sebab terjadi plasmolisis cairan sel

DEFINISI
Bagian dari ilmu kimia yang mempelajari reaksi-reaksi kimia yang dapat dimanfaatkan dalam proses industri untuk mengolah bahan asal menjadi bahan jadi atau bahan setengah jadi.
»»  READMORE...

DEFINISI

DEFINISI
Bagian dari ilmu kimia yang mempelajari reaksi-reaksi kimia yang dapat dimanfaatkan dalam proses industri untuk mengolah bahan asal menjadi bahan jadi atau bahan setengah jadi.



Sabun
Kimia Kelas 2 > Kimia Terapan Dan Terpakai
198
1.
PENGERTIAN
Garam dari asam lemak dengan KOH/NaOH

2.
JENIS
O
½½
Lunak : R ¾ C ¾ OK

O
½½
Keras : R ¾ C ¾ ONa


3.
SIFAT
1. Mengandung alkali bebas Þ kualitas rendah
2. Dalam H
2O Þ
koloid
3. Dalam air sadah
Þ kurang membuih
4.
PEMBUATAN
Lemak / Minyak + NaOH / KOH
»»  READMORE...